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ANALYSIS OF PARTLY STIFFENED SUSPENSION
BRIDCES TYPE 2 F.

By J. HaLcro Jomwston, B. Sc,

At the Punjab Engineering Congress 1922 Mr. Lyster discussing
his paper on Suspension Bridges gave as his opinion that such bridges
must either be stiffened in the orthodox way or left unstiffened altoge-
ther. We disagreed with this view at the time and showed how most
of the bridges in the Punjab Hills- depended for stiflness on the rigidity
of their floors. This paper attempts to give a solution of the general
case where the Moment of Inertia of the stiffening system may vary {rom

zero to infimity.

The method used is not new. It is dealt with in Burr's Suspension
Bridges, pages 212—247, in Johnston Bryan and Turneaure : Modern
Framed Structures, Part 2, pages 276—318 and in Melan-Steinman :
Theory of Arches and Suspension Bridges, pages 76—86. The first two
books only have been consulted. In both, the method is used to get
more accurate results for a fully stiffened bridge. Influence lines are
not worked out. As the author of the chapter referred to in Modern
Framed Structures rightly says, the bending moment is not proportional
to the load and the use of influence lines is therefore inadmissible. In
the following theory, however, it will be shown that this is hardly a prac-
tical objection. The use of influence lines is becoming more and more
the practice of every drawing office and this paper confines itself to methods
of drawine these. The special case of small Moment of Inertia or what
is sometimes referred to as the stiffened floor is also dealt with. No
attempt 1s made to treat the general case of continuous girder and sus-
pended side spans. The analysis is of a bridge with free ends at the
towers and straight back stays, referred to by Steinman as type 2 F.
This we think 1s the type which will be most used in the Hills of India
and the treatment of one case only makes the analysis easier to follow.,

The method and assumptions are briefly as follows :—moment of
inertia uniform for all parts of the span, no bending moment and no end
reactions under dead load and at mean temperature. The thrust is found
in the ordinary way with the assumption of deflection negligible or
large moment of inertia. No attempt is made to correct this for deflec-
tion effects. The bending moment is then worked out for a single load
as a function of the thrust and deflection. The well-known eguation
connecting moment and deflection 1s added and the deflection is eli-
minated leaving an equation giving the moment as a function of the
thrust, the position of the load and the position of the section at which

the moment 1s required.
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The following diagram and definitions will explain the use of the
letters :—

au —deflection at P
jE:i . 2 SEQPE TR
X
Eld& 2::1=Wam=1 - - BM , 5 due to W
a dx
3
gclix;&:wg? ZWS = G Ehﬁar IE Y b
H e ——thrust. -
Wrh— - thrust due to W
I— - moment of inertia of floor,
R e
o —

g | e

Thrust.—The thrust is found by the method of least work. [t
depends on the work done in bending the stiffening girders, stretching
the cables including backstays and that due to temperature sLLamﬂ It
must therefore be worked out independently for each case. Ihe fol-
lowing solution will however generally give results within 5 per cent.

and will illustrate the method of calculation. It allows for the work
done in bending only.

Work done in bending the girder= 2][:[ Mdx......... I.
; S & - dF u"".fI
Diff. with respect to H : ST e 1 § fM =().
Let M°=bending moment in girder assuming no cab
then : M:NIQ_,I—I&Y_ I
dM
therefore S
f (M°— Hay) ay dx=0
e SIMve o

$2 dx
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To find the influence line for H assume a single load W.
Let M°=Wam® where m°=3% (I—z) (I4-x).. -. .. x less than z

= (142) (1) - -
=} (1) () ? » 7 =

y= (1—x%) /r
o fm“ (1—x?) dx
henee h =Wy f T LR e 4.

The values of these integrals are easily found :—

P 12 -+
Jm“" (1—=x¥dx =% (I—2) (14=) (1—=x?) dx— | (x—=) (I-x?) dx
==ty =z

1
1 1

= (I- z}f{]—xsj d}-r—j(x—z"x St-zx ®) dx
a Z

= (5-2%) (I—z%) /12

=) dx = zf (I—2x*+x%) dx=16/15
P | o A —
henee h = (5—=?) (I—23) AT R 5.

This is the influence line of H. It is shown on plate | plotted
for different values of z.

In the case of a uniform load “W" over the whole span :

1

fad

-|..1 1
H= [ hdW= 2w hde = f (5—2% (1—2?) dz

1 -] o

== AN e e B R S PRI R T 6.

This the same as wl 2/8f, the formula generally used in approximate
calculations of thrust.

Bending Moment.—The Bending moment due to a single live
load W given above is more accurately expressed as :—

M=M"—H?! ay—Hau.c.ccocovecenacanen. &

where ** au ." is the deflection at P, H the total thrust due to all causes
dead and live. H? is that due only to the load W. The terms due
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to dead load are left out as they cancel cach other. The equation may
be rewritten :— :

Wam=Wam"—rhayW— Hau

or m=m"—thy—Huw/W.c..ccoocvineinine.s o | 4
d®Y ,
But M=—LI IX? where X=ax and Y=au
2 2

thercfore E:lixl:- =‘“3Ei“fm
2 2N 2

substitute (8) j;—g =a%{rhr—m°]—lﬁ%l—u ; put cﬂ:.ﬂi‘;j:
: s

+then %‘;— e B IR s s 10.

where F(x)=(rhy—m~)W/H.

Since F (x) is of the second degree it can easily be shown by
differentiating that the following is a solution of equation 10 :

u=P e 4 Q ¢ —-F[x}-—-EI?F' ) eisnensanmnnssy 1.
where P and Q are constants of Integration.
Now (8) may be rewntten —m=[F (x)4-u] H/W...... 12.

substitute {11) and note that F* (x)=—2hW/H

—m=(P’ e & J-Q e™ X }Hf\v'{';fh/cﬂ
A anh ex+B eogh cx4l). v ivivniisinnaamun 13.

A and B are constants of integration and D=2h/c® Now since
“u” and F (x) consist of two separate branches according as “x " or
*z " is greater, so also will “u” and “ m.” We have thercfore four
constants to eliminate.

Constants of integration.—To eliminate these constants four
equations are required. These are got by equating the Bending Moments
to zero when x=--1 and —| and when x=z by equating the BMs of the
two equations and by putting the difference of the shears equal to W,

Let—m=A sinh cx+B coshex-+tD “x " less than “z " 14,

—m'=A"sinh ex+B' cosh ex+D “z7 ,, ., “x7 I35

The shear=— ‘%%—W (—? and the four conditions may be written i~
1 X
—AsnhcdBeoshetD=0......ccicteicienoncasn 16.
A’ sinh ¢4B cosh ¢ =D=0. . ....coo i, I7.
A sinh cz+B cosh cz= A’ sinh ¢z+B" ¢sshezee oo -0 - 18.

A cosh cz+B sinh cz= A’ cosh cz+B’ sinh cz— /¢ =19,
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whence the following values of the constants are obtmned:

sinh ¢ (1 —z) gr— sinhc(l+z)
B Zesinh ¢ ) 2¢ sinh ¢
g Bohellesg) o8 o, gohellua) o8,
o Z2c cosh ¢ cosh ¢ 2¢c cosh ¢ cosh ¢

Substitute these values in 14 and 15 also the value of D

- sinh ¢ lf] — z) [ cosh cx _ sfnh t:x] _ _21_1 [ o cosh cosh ex }
cosh ¢ sinh c ol “cosh ¢

" Sgl_h_c E] i [ coshex  sinh c:»] 23—:[ cosh U{'I
2c cosh c sinh ¢ & cosh ¢}

These are the most general equations of the Bending Moment in-
fluence lines. They show that it is independent of the dip ratio ™
The effect of the moment of inertia is contained in the factor ¢ 7, When
¢ is Q, I is infinite and the equations become those ordinarily used for
stiffened bridges. When ¢ is large, | 1s small and the equations arc
those of the unstiffened bridge. These cases will now be dealt witl
separately. :

I.c=0 Putting sinh c¢=c and cosh c=1-¢%/2, we get :

m=2%{1—z) (14+x) —h (1-—x? o e — rhwassse 2
m' =5 (1+z) (1 —x)— h (I1—x%) L ameesmlteanan, 24,

These are the equations of the influence lines of the fully stiffened
bridee and may be got from first principles. They are shown on plate 1
*jluttcd for five different values of x.

;s : 41 +1 '
We find on integrating thatj m°dz., = [rh}r dz=% (1—x %),
—1 b

Therefore | m dz=0 which means that a uniform live load over the
-
whale span causes no bending at any point, This of course would not
have been the case if the strain in the cable had been taken into
account in finding the thrust. An inspection of the influence lines
shows that the maximum positive moment occurs when x=z and
when the load is about one-hfth from either end of the span. The
g = = ? e

maximum positive value of [ mdz is approximately 0°068. This means
that the oreatest positive moment occurs when the bridge is loaded
from Ato B with a uniform load p lbs/ft. and is equal to 07068
pa *=pl 2/39.

Shear —On differentiating with respect to x we obtain the in-
fluence lines for shear., They are :—

s=2hx+3({l—z) Lz i i e 75,

3221"!}(_2 {I —:—z} };} . T T T 26
When x=1, s '=2h—35 (1+2). This 1s the influence lme uf right

reaction on the pier. Again on integrating we find that .ﬂ;_(]
-—J
which shows that a uniform live load over the whole span casues no
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shear at any section and no end reactions, and again this is duc to the
cable strains having been neclected.

II.c large.—Putting sinh c=cosh ¢=} €€ etc,, we obtain the
following approximate equations of the B.'M. influence lines :—

IT o—c (z—x) 4h]

m= -2—(:}_ _— _c_J G, <t SEPEN 2?.
m'=f'.[ ¢ (x—z) _ fﬂ’.] o TR 28
C C

These equations hold when the moment of inertia is very small as
in the case where a stiffened roadway is used. They may be used when ¢
is greater than 6. With ¢= infinity the bending moment vanishes.
Plate 2 shows influence lines for different values of x when ¢=6,

+1
m dz=0 as belore showing that a uniform load causes no

bending stress. The greatest positive moment occurs when z—=x. Ther

BT
o 2c[ I c]

which is nearly constant for all values of z but somewhat greater near
the ends of the bridge. This 1s the B. M. due to a single concentrated
load. It also appears that the moment varies mversely as ¢, that 1s
it is proportional to 4/I. But for fixed stresses m is proportional to
I/y" where ¥ is the distance of extreme fibre from the neutral axis.
Hence y' is proportional to 4/1.

Shear.—The shear influence lines are got by differentiating with
respect to x:—

E:-"*ée_c(z_ x) <z ....29.
s’ = e —clx—2) e S XA 30.

These equations show that for a load to cause any shear 1t must be
very close to the section and that there are no end reactions unless the
load is very near the end of the bridge. Also the maxtmum shear eot
by putting x=z is W/2.

Practical Application.—Hitherto suspension bridges have been
divided into two distinct classes, stiffened and unstifened. The latter
have been used wherever cheapness has been the primary considera-
tion and the former where stiffness has been essentizl. By the use
of the preceding formule it becomes possible to design for any specified
stiffness or depth of girder, and to determine the economic degree of
stiffness to adopt we must have a much clearer conception of the relative
advantages and disadvantages of this property. The principal con-
siderations will probably be the cost of stiffening girders when they are
used and the excessive gradients and dangerous oscillations without
them, The author is not in a position to discuss these and the problem
requires more than a mathematical treatment. A few deductions may
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e —— ey

however rcadily be made from the form of the equations. On plate 3
values of 1°d®, 1°, m g, and m 1, functions of 1/c have been plotted. These
are defined as follows :—

' = al® = .. length of span covered for maximum postive B, M.

d = fra d®. .depth of girder required for maximum positive B. M.

[ — rwa® e .Moment of inertia required for maximum positive
E B. M.
M= pa®ms..maximum BM due to uniform lcad
= Wa m;..maximum BM due io single load W

g = p/w ..ratio of live to dcad load. :

An inspection of the moment curves shows that for values of /e
between 0 and 0'1 of the concentrated load curve and between ('] and
06 of the uniform load curve the moment is approximately proportional
to l/c. Now assume that we use beams of the same shape, i. e., radius
of gyration proportional to depth. Then from first principles of bending
*“M 7 varies as Ad where A" is the area of cross section and “ d "' the
depth. Also M varies as 1/c which is proportional to d /A, hence A is
independent of the depth. Inan ordinary girder bridg= A is propor-
tional to 1/d and there iz economy in using a deep girder, In a
suspension bridge, if our assumptions hold, the material remains nearly
constant whatever the depth.

N. B.—The curves 1 plate 3 are to be used as a guide_enly and not
to replace calculation.

The following example will make the method clear :—

/T = \

A

whn

L L
SR

Example.
150 feet
6
1000 Ibs./ft. live load
600 Ibs./ft. dcad load
3000 Ibs. live load
30108 Ib./in? for stecl
2X105 1h./i, 2 for"timber
18%108 1b./in 2 for steel
2X10?1b./;, ® for timber

- mEgT NP
I I
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The IJDSbll}Ihf}’ of using larger unit stresses and a Iargcr modulus

of elasticity in a bridge of this sort is worth considering.

There 15 not

the same danger in case of failure and the greatest stresses tend to become

equal.
Substituting the above values we gst:i—
q= |67 )
d = 3'9 d° ins with steel
65 d° ins with tumber
I=581°x10¢ in with steel
= &7 I° x10% in? with timber
NI 227108 in Ibs, load uniform

54w 108 :n lhe, load concentrated

Suppose 1/e=0"1.
Dead load thrust=% raw

. Live load thrust = rpa [ hdz =

H=
=a H/Ec *=(for timber)

M (uniform load) =pa

100)x 1502
M (zingle ina;!}:Wal':I::‘},OJUX Ial ==

=/ { ]:;;'M _—

270,000 ibs.

(zee influence line)

6 x 1000 %150 <0075

total

x0009=

67,000 lbs.

thrust _:33?,030 ”:-s..
5,400 in*

& f m dz= (see influence line)

202,000 ft. ibs.
22,500 fi. Ibs

Twa berns 3 —9" wide xX9" dzep give the necessary M of 1.

The following table shows the effect of changing the depth :—

[T L i

| d | 1/c Tin%
= pEe ;
Stecl 90" D'Q.‘%l 39,5(.!!.‘!;
Timber 90"l 072 312,000
Steel 36°| 0-54 13, 00
- Timber | 367 033) 82 400
Bteel a 12"l 0-20 1,70(5'.
Timber 127 _ {}'LEi & 700
Sieel 6" ﬂ-l}ﬁli 23[1;
Timber 67 005 1,401}?
1 |

M. in-1bs.

16-7x108

10108
13-6><1uf>

8D x 106

2 light steel girders (@ 75
1b=./ ft. cach

2 timbgr girders,
S in?

2 plate girdera @ 130 lhs.
cach

2 timber
&0 in®

booms

girders, booms

5:5% 108
31 %108
10 s 106

08 x 106

6 No. BSJal12" %6 " =24
Ihs/ it.

2 heams 2 —{" % 12"=T720
in?

6 No. 67x5%:150 lbs.

2 beams 3'—3" X6 =470

inZ
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DISCUSSION.

The Author introducing his paper said he had attempted to make
possible the design of a suspension bridge without shffening girders
and yet possessing a certain degree’of rigidity ; to fll, in other words, the
gap between the stiffened and the unstiffened bridges. He felt an apology
was due from him for presenting the Congress with 2 mzthematical
paper but he could hardly give the paper without the mathematics and as
the subject as far as he was aware was new there were very few examples
of this type of bridee which could be used as illustrations. His first intre-
duction to the subject was dus to Mr. Astbury, Chicf Engineer, P. W_. D,
. who designed a suspznsion bridge with stiffencd floor. M. Lyster after-
wards designed a similar bridge. He regretied the latter was not present
to give his views on the subject. On the destruction of the first Pandoh
bridge the author was asked to design the new one. From the experience
gained in the first bridge he decided to use two stifening besms
15 inches by 10 inches in place of the original girders. At that time he
did not know how to calculate the Bending Moments and the bearrs were
made very similar to the bottom booms in the first bridge. When these
booms had been put in place the bridge had been tested and seems to
have all the stifiness necessarv. If the calculations given in the paper
were now applied to these beams 1t would be found that they were on the
weak side. The loading assumed was a d=nse crowd of people covering
a portion only of the span as shown in Plate II. The chance of such a
load at present was very unlikely and the beams were doing their duty
quite sahisfactonly.

But the main object of the paper was if possible to do away with
the absurd practice of using large stiffening girders in bridges on hill
roads in India. These girders were very expensive and they were very
seldom made strong cnough ; the booms were of short imbers znd the
joints had an efficiency of under 3 per cent. The first load on the bridge
dastroyed these joints and the result was an unsightly structure. Two
examples of the ]Jdm:l could be scen at Mandi and Oot. The first Pandch
bridge 230 feet span had booms made up of three lines of 12 feet railway
sleepers and in all 7,000 bol:s | inch by 15 inches were required to deve-
lop a tension equivalent to two sleepers. If the money spent on these
bolts had been spent instead on surkhi, the bridge would still be stand-
ing.

The author thanked the S cretary for the care which had been
taken in printing the paper. But there were a few corrections due to
mistak § in the orizinal minascript, which he drew attention to.

Mg. A. R. AsteuRy said that he wished to congratulate Mr. Johnston
for writing a paper for the Congress on such an intricate subject. The
prulilem was exceptionally difficult and involved a lot of mathematical
work.

THE PRESIDENT said he was afraid it was too much to expect ordinary
individuals to cross swords with the author but perhaps some of the
mathematicians might deal with some of the points raised by corres-
pondence later.



